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Abstract 

Assessing the quality of urban ecology is indispensable with the dynamic levels of 

urbanization as this is an important parameter for sustainable development. The rapid 

population growth with fast urban shift for last three decades is results into eco-health 

destruction and challenge. This continuous damage calls for quick revitalization of the urban 

ecosystem. The main objective of this study is to find out ecological crisis including air quality 

with the help of satellite imagery. The Kolkata Metropolitan Area (KMA) is chosen as study 

area because it is the rapidly growing densest Indian metropolitan city and listed among 

world’s top air polluted cities. In order to accomplish the study, multidate Landsat 8, 

Sentinel-2A and Sentinel-5P satellite data from 2018 to 2022 were used. The ecological crisis 

status was derived in sequential stages as a combination of remote sensing ecological index 

(RSEI) and air pollution index (API) named as air quality remote sensing ecological index 

(AQRSEI). First, among the four different indicators of RSEI, greenness, dryness and wetness 

were measured based on Sentinel-2A satellite data and temperature was measured based 

on Landsat 8 satellite data. Second, NO2, SO2, O3, and CO were measured based on 

Sentinel-5P satellite data for air pollution index (API). Third, entropy weight method was 

applied on indices to generate RSEI and AQRSEI. The RSEI value of KMA is decreased from 

0.541 of 2018 to 0.422 of 2021 and further increased from 0.422 of 2021 to 0.534 of 2022. 

The AQRSEI value of KMA is decreased from 0.547 of 2018 to 0.456 of 2021 and further 

increased from 0.456 of 2021 to 0.546 of 2022. Both, RSEI and AQRSEI are indirectly related 

to ecological crisis and KMA shows an upward trend in ecological crisis level within 2018-

2022.Thus, effective ecological restoration is needed in KMA. 

Keywords Urbanization, spatial technology, eco-environment, air pollution, ecological index. 
 

Introduction 

The scientific study of human and environmental interaction and relationship within the 

zone of interest along with the surrounding elements are known as ecology (Marzluff et al., 

2008), (Sutton & Anderson, 2020). The worldwide rapid population growth couple with 

growing urbanization creates a poor urban ecological health crisis (Newcas, 2021). Several 

elements which are associated with the urban ecological space are getting disturbed with 

the continuous unplanned urban growth (Wust et al., 2002). Now a days several eco-

environmental problems such as vegetation destruction, water pollution, air pollution, urban 

heat island etc. are the major issues of concern (De Carvalho & Szlafsztein, 2019), (Ajibade et 

al., 2020). The identification and analysis of associated factors and elements of urban 

ecology are becoming crucial in order to deal with such ecological crisis. The monitoring and 
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assessment of ecological condition is not only benefiting human being rather it will help and 

protect other organisms also (Maity et al., 2022).  

The global studies on ecological crisis assessment can be split into two broad 

categories. The first category focus on ecological impact and risk assessment whereas the 

second category focus on present ecological condition (Shan et al., 2022). In the traditional 

approaches of ecological condition study, it involves extensive field-based study and lead to 

difficulty in data collection and data fusion (H. Xu et al., 2019). To overcome such situation, 

new way of ecological assessment based on spatial technology are growing importance (Zhu 

et al., 2020). The spatial technology by means of multidate remote sensing data, GPS, high 

resolution satellite image has enabled environmentalist to work over any zone of interest 

with cost-time effectiveness and large-scale monitoring (Firozjaei et al., 2020). Scholars 

across globe are working extensively on ecological monitoring and eco-environmental 

assessment based on remotely sensed datasets which is growing popularly as remote 

sensing based ecological index (RSEI) (Hu & Xu, 2019), (Li et al., 2020), (Wu et al., 2020). The 

index based ecological assessment needs selection of several suitable indicators which are 

highly act as affecting factors for ecology.  

In context to the ecological condition assessment mainly four indicators such as 

greenness, dryness, wetness, heat are most affecting factors which needed to be (Cai et al., 

2023) and based on it the RSEI model of the Guangxi Beibu Gulf Economic Zone (GBGEZ) 

during 2001–2020 was assessed (Liao et al., 2022). In very recent, a new approach is growing 

which urge to add air pollution assessment in ecological index analysis and given the status 

of air quality based remote sensing ecological index (AQRSEI) (Yue et al., 2019). The RSEI and 

AQRSEI are highly enabled to quickly detect change in spatial ecological conditions. The 

availability of high-resolution Landsat 8 Thermal infrared Sensor (TIRS) data for land surface 

temperature measurement, and Sentinel 2a data for greenness, dryness and wetness 

analysis coupled with Sentinel 5p satellite data for air quality monitoring made RSEI and 

AQRSEI measurement more proficient and accurate (Y. Wang et al., 2022). The RSEI and 

AQRSEI needs indicator weight assignment.  

There are several weight assigning models such as analytic hierarchy process (AHP) 

(Roshani et al., 2023), expert scoring method etc. are available based on subjective 

judgement which are needed for weight assignment to the indicators of RSEI and AQRSEI. In 

case of Yangxian, China, AHP–PCA and the minimum cumulative resistance (MCR) model was 

used to construct an ecological security network based on multi-factor ecological sensitivity 

(ES) and conduct quantitative spatial analysis (Y. Wang et al., 2022), (Liu et al., 2023). 

Compare to the subjective based weight assignment model, the object judgement-based 

Entropy method is most robust one for ecological index analysis based on application 

(Zongfan et al., 2023). The Entropy was first introduced and used into information theory by 

Shannon (1997). It is used to assess the degree of dispersion of an indicator. If the degree of 

dispersion of an indicator is greater then, the weight of that indicator in the evaluation of the 

composite indicator will be also greater (C. Wang & Zhao, 2019). The basic of the entropy 

weighting method is to determine weights objectively based on the magnitude of the 

variability of the indicators; which relies on only the dispersion of the data (J. Wang et al., 

2023).  

In India, studies have been carried out related to this field on different growing cities 

such as Delhi (Lu et al., 2019), Mumbai (Rahaman et al., 2021), Kolkata (Das et al., 2021) etc. 
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but very poor importance were given to air pollution in context of ecological studies. Among 

Indian metropolitan cities, The Kolkata Metropolitan Area (KMA) of West Bengal is densest 

and among rapidly growing cities and according to the “The Air Quality and Health in Cities 

report”, 2022 published by the State of Global Air, Kolkata is among the top 20 most polluted 

cities in the world in terms of PM2.5 levels. Further the increasing pollution and 

encroachment of an important ecological Ramsar site named east Kolkata wetland (Kumar et 

al., 2023) coupled with the deteriorating urban ecological health condition of KMA is now 

becoming a serious issue which need to be studied very crucially. Though of several attempts 

were made to study KMA ecology, but the crisis in ecological condition of KMA were never 

studied extensively based on spatial technology, thus there is an immediate need for study 

regarding ecological crisis of KMA. The main objective of this study to find out ecological 

crisis of KMA with the help of satellite imagery and develop indicator based two different 

ecological index and make a comparison between them. 

 

Materials and Methods 

Study area: Kolkata Metropolitan Area (KMA) is the outgrowth of the city of Kolkata which is 

situated at the east bank of river Hooghly. However, the KMA (Figure 1) consists of the twin 

cities on either side of river Hooghly, viz. Kolkata and Howrah. At present, KMA extends over 

six districts namely Kolkata, Howrah, Hooghly, Nadia, North 24 Parganas and South 24 

Parganas. The area comprises of 4 Municipal Corporation (MC), 37 Municipalities (M) and 23 

Panchayat Samities (PS). The approximate geographic extents of the present KMA are about 

1876sqkm. According to 2011 census KMA held a population of around 15.87 million as 

against around 29 million urban population of West Bengal. 

 
Fig. 1 Location map of Kolkata Metropolitan Area, West Bengal, India, 2023. 
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Datasets: In this research mainly three different satellite data from 2018 to 2022 were used. 

First, Landsat 8 thermal infrared sensor (TIRS) with 30 metre resolution data were used to 

measure land surface temperature (LST) of KMA. Second, Sentinel 2A satellite data with 20 

metre resolution were employed to develop Normalized difference vegetation index (NDVI), 

Modified normalized difference water index (MNDWI) and Normalized difference built up 

and bare soil index (NDBSI). Third, Sentinel 5P data were used to calculate air pollution index 

(API). 

 

Methods: In this paper systematic sequential methods were opted. It involves downloading 

of satellite data followed by preprocessing, indicator generation, weight assignment based 

on models generated from literature review and thereby final outcome in the form of RSEI 

and AQRSEI. A methodological flowchart (Figure 2) is shown for clear idea. 

 

Data pre-processing: After downloading the satellite datasets, it was carried out through 

preprocessing techniques such as atmospheric correction by applying dark object subtraction 

algorithms (DOS) followed by pan sharpening and radiometric calibrations. Further, images 

were merged and clipped to extract Kolkata Metropolitan Area (KMA). 

 

 
Fig. 2 Flowchart of adopted methodology. 

Indices processing: Mainly five indicators were taken into account such as greenness, 

dryness, wetness, heat and air pollution of the KMA. Different indices were processed by 

mathematical techniques based on different data source 

 

Greenness index (NDVI): The greenness index of KMA was derived for 2018 to 2022 by 

representation of the NDVI, which is mainly calculated using satellite remote sensing data to 

evaluate the growth status of green vegetation in the zone of interest (Huang et al., 2021). 

The greenness index method is calculated based on the reflection of red and near-infrared 
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light, which can describe productivity, ecosystem vitality, plant growth, and other 

information (Vélez et al., 2020). It is calculated as: 
𝑵𝑫𝑽𝑰 = (𝑵𝑰𝑹 − 𝑹𝑬𝑫)/(𝑵𝑰𝑹 + 𝑹𝑬𝑫)              Eq. (1)  

The NIR represents near infrared band whereas RED represents pixel value of red-light 

reflectance. The value of NDVI ranges in between -1 and +1 where higher value represent 

high vegetation and vice-versa. 

Wetness index (MNDWI): The wetness index of KMA (2018-2022) was mainly represented in 

the form of MNDWI. The MNDWI mainly identifies open water bodies, reservoirs lakes and 

rivers (Bie et al., 2020). The MNDWI is calculated based on the reflectance of green and 

shortwave infrared (SWIR) which is can detect humidity of soil, vegetation and water 

(Engine, 2020). The calculation of MNDWI is mentioned below: 
𝑴𝑵𝑫𝑾𝑰 = (𝑮𝑹𝑬𝑬𝑵 − 𝑺𝑾𝑰𝑹)/(𝑮𝑹𝑬𝑬𝑵 + 𝑺𝑾𝑰𝑹)           Eq. (2)  

The value of MNDVI ranges in between -1 and +1 where higher value represent high wetness 

and vice-versa. 

Dryness index (NDBSI): The dryness is expressed by NDBSI which is mainly composed of built-

up index (IBI) and bare soil index (SI) which is expressed in follows (X. Wang et al., 2023). In 

case of IBI calculation, SWIR, near infrared (NIR), green and red band were employed. 

Further SWIR, red and blue band were used to calculate BI (Yan et al., 2021).  
𝑺𝑰 = ((𝑺𝑾𝑰𝑹 + 𝑹𝑬𝑫) − (𝑵𝑰𝑹 + 𝑩𝑳𝑼𝑬))/((𝑺𝑾𝑰𝑹 + 𝑹𝑬𝑫) + (𝑵𝑰𝑹 + 𝑩𝑳𝑼𝑬) )   Eq. (3)  

𝑰𝑩𝑰 = (𝟐𝑺𝑾𝑰𝑹/(𝑺𝑾𝑰𝑹 + 𝑵𝑰𝑹) − (𝑵𝑰𝑹/(𝑵𝑰𝑹 + 𝑹𝑬𝑫) + 𝑮𝑹𝑬𝑬𝑵/(𝑮𝑹𝑬𝑬𝑵 + 𝑺𝑾𝑰𝑹)))/(𝟐𝑺𝑾𝑰𝑹/

(𝑺𝑾𝑰𝑹 + 𝑵𝑰𝑹) + (𝑵𝑰𝑹/(𝑵𝑰𝑹 + 𝑹𝑬𝑫) + 𝑮𝑹𝑬𝑬𝑵/(𝑮𝑹𝑬𝑬𝑵 + 𝑺𝑾𝑰𝑹)) )       

          Eq. (4)  

𝑵𝑫𝑩𝑺𝑰 = ((𝑺𝑰 + 𝑰𝑩𝑰)/𝟐)            Eq, (5)  

The value of NDBSI ranges in between -1 and +1 where higher value represent high dryness 

and vice-versa. The NDBSI is an important indicator in respect to environment. 

Heat (LST): LST is a heat index which is obtained based on single channel algorithm. In this 

study thermal band 10 of Landsat 8 (TIRS) are used. The LST of KMA was calculated by 

following sequential steps (Yang et al., 2020). First, the top of atmospheric (TOA) spectral 

radiance were calculated by following below mention equation: 
𝑳𝝀 = (𝑴𝑳 × (𝑸𝒄𝒂𝒍 +  𝑨𝑳))         Eq. (6)  

Where Lλ represents spectral radiation (Watts / (m2*sr*um)), ML represents the Band 

specific multiplicative rescaling factor from the metadata, (RADIANCE _ MULT _ BAND _ n), 

Where ‘n’ represents the band number. (10 for Landsat), Qcal = Level 1 value in DN or 

Corresponds to band 10 and AL is Band specific additive rescaling factor from the metadata, 

(RADIANCE _ ADD _ BAND _ n), Where ‘n’ is the band Number 10. Second, the conversion of 

TIRS data from spectral radiance to brightness temperature (BTi) occurs according to the 

below mention equation: 

𝑩𝑻𝒊 = ((𝑲𝟐/𝑰𝒏) ∗ (𝑲𝟏/𝑳𝝀) + 𝟏) − 𝟐𝟕𝟑. 𝟏𝟓 (𝒊𝒏 ° 𝑪)        Eq. (7)  
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where, BTi is top of atmospheric (TOA) brightness temperature in Kelvin or Degree Celsius 

for TIRS band i (Band 10), K1 = Band specific coefficients are thermal conversion constant 

from the metadata. (K1_CONSTANT_BAND_n), Where ‘n’ is the band Number 10, K2 = Band 

specific thermal conversion constant from the metadata. (K2_CONSTANT_BAND_n), Where 

‘n’ is the band Number 10. The result of this process is the temperature in Celsius, and the 

radiant temperature is the absolute zero temperature is about—273.15OC (Onačillová et al., 

2022). Third, NDVI is calculated by using following formula: 

𝑵𝑫𝑽𝑰 = (𝑵𝑰𝑹 − 𝑹𝑬𝑫)/(𝑵𝑰𝑹 + 𝑹𝑬𝑫)        Eq. (8)  

Where NIR is normal infrared band. Fourth proportion of vegetation (Pv) is calculated by 

using below mentioned equation: 

𝑷𝒗 = ((𝑵𝑫𝑽𝑰 − 𝑵𝑫𝑽𝑰𝒎𝒊𝒏)/(𝑵𝑫𝑽𝑰𝒎𝒂𝒙 − 𝑵𝑫𝑽𝑰𝒎𝒊𝒏))^𝟐      Eq. (9)  

Fifth, land surface emissivity (LSE) is calculated by using below mentioned equation: 

∈= (𝟎. 𝟎𝟎𝟒 ∗ (𝑷𝒗 + 𝟎. 𝟗𝟖𝟔))       Eq.  (10)  

Where, ∈ represents LSE. Sixth, final LST is calculated by following equation: 

𝑳𝑺𝑻 = (𝑩𝑻𝒊/(𝟏 + (𝝀 ∗ 𝑩𝑻)/𝑪𝟐)) ∗ 𝑰𝒏(∈)       Eq. (11)  

where, BT is TOA brightness temperature (°C), λ is Wavelength of emitted radiance (Table -

2), C2 = h*c/s = 14,387.685 μm K; h = Planck’s constant = 6.626*10 – 34Js; s = Boltzmann 

constant = 1.38*10 – 23 J/k; c = Velocity of light = 2.998*10 m/s. 

Air Pollution (API): There are several gases which causes pollution in air. In this paper mainly 

four gases such as nitrogen dioxide (NO2), Carbon monoxide (CO), Ozone (O3), Sulfur dioxide 

(SO2), are taken into consideration for air pollution index (API) generation (Kaplan & Avdan, 

2020). Based upon one study carried by (Campos et al., 2021), the weights are assigned 

according to degree of harm caused by each pollutant such as NO2 accounts for 70%, SO2 

accounts for 15%, O3 accounts for 10%, and CO accounts for 5%. All the four gases are 

integrated by following below mentioned equation: 
𝑨𝑷𝑰 = 𝟎. 𝟕(𝑵𝑶𝟐) + 𝟎. 𝟏𝟓(𝑺𝑶𝟐) + 𝟎. 𝟏(𝑶𝟑) + 𝟎. 𝟎𝟓(𝑪𝑶)      Eq. (12)  

 

Remote sensing ecological index (RSEI) & Air quality based remote sensing ecological index 

(AQRSEI): The RSEI and AQRSEI is an important tool to detect ecological status of an area 

(Kaplan & Avdan, 2020), (D. Xu et al., 2021). Before calculation of RSEI and AQRSEI, weights 

are assigned to individual indicators based on entropy model. In order to calculate entropy 

weight (Z. Wang et al., 2023), the ecological indicators must be discriminated (with forward 

normalization for the positive indicators of ecology such as NDVI & MNDWI with equation 13 

and inverse normalization for the negative indicators of ecology such as NDBSI, LST & API 

with equation 14) to ensure the reliability of the experimental results using following 

equations: 
𝒀𝒊𝒋 = (𝑿𝒊𝒋 − 𝐦𝐢𝐧𝑿𝒊𝒋)/(𝐦𝐚𝐱𝑿𝒊𝒋 − 𝐦𝐢𝐧𝑿𝒊𝒋 )         Eq. (13)  

𝒀𝒊𝒋 = (𝒎𝒂𝒙𝑿𝒊𝒋 − 𝑿𝒊𝒋)/(𝐦𝐚𝐱𝑿𝒊𝒋 − 𝐦𝐢𝐧𝑿𝒊𝒋 )        Eq. (14) 
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Where, Yij represents the normalized value, Xij represents the original value of each 

indicator, minXij represents the minimum value of each indicator, and maxXij represents the 

maximum value of each indicator. Further, weight is assigned to four indicators such as 

NDVI, MNDWI, NDBSI and LST based on entropy model And RSEI is calculated using following 

equation: 

𝑹𝑺𝑬𝑰 = ((𝟎. 𝟐𝟓𝟎𝟗 ∗ 𝑵𝑫𝑽𝑰) + (𝟎. 𝟐𝟓𝟎𝟒 ∗ 𝑴𝑵𝑫𝑾𝑰) + 𝟎. 𝟐𝟒𝟖𝟔 ∗ 𝑵𝑫𝑩𝑺𝑰) + (𝟎. 𝟐𝟒𝟗𝟗 ∗ 𝑳𝑺𝑻))  Eq. (15)  

After RSEI calculation, again weight is assigned based upon entropy calculation to five 

indicators such as NDVI, MNDWI, NDBSI, LST and API and AQRSEI is derived by following 

below mentioned equation: 

𝑨𝑸𝑹𝑺𝑬𝑰 = ((𝟎. 𝟐𝟎𝟎𝟔 ∗ 𝑵𝑫𝑽𝑰) + (𝟎. 𝟐𝟎𝟎𝟐 ∗ 𝑴𝑵𝑫𝑾𝑰) + 𝟎. 𝟏𝟗𝟖𝟕 ∗ 𝑵𝑫𝑩𝑺𝑰) + (𝟎. 𝟏𝟗𝟗𝟖 ∗ 𝑳𝑺𝑻) + (𝟎. 𝟐𝟎𝟎𝟒 ∗

𝑨𝑷𝑰))           Eq. (16)  

Here the value of RSEI and AQRSEI are ranges in between 0 to 1 where lower value represent 

high ecological crisis and higher value represent lower ecological crisis. To accomplish all the 

software related work, Q-GIS 3.16 version and ARC GIS 10.9 version were used. 

Results and discussions 

 
Indicators: Primarily four indicators such as NDVI, MNDWI, NDBSI and LST are taken into 

account for calculation and generation of RSEI map of the study area. In case of AQRSEI 

calculation and map development of study area, total five indicators are taken into account 

named NDVI, MNDWI, NDBSI, LST and API. These indicators are taken into consideration to 

see its impact upon the ecological status by means of RSEI and AQRSEI. Thereby detailed 

analysis of indicators is discussed below. 

 

Greeness: NDVI which is an important positive indicator for RSEI and AQRSEI. Generally, 

NDVI measures greenness of an area. It is an important parameter for vegetation 

monitoring, agriculture, land use planning, environmental studies and monitoring ecological 

status. It gives objective and quantitative information of greenness of an area. The value of 

NDVI of KMA is ranges in between 0 to 1 because it is shown here after normalization. 

Higher value represents high vegetation and vice-versa.  The mean NDVI value of KMA (Table 

1) is changing within five years where the value is increased from 0.649 of 2018 to 0.663 of 

2020 and then decreased from 0.663 of 2020 to 0.528 of 2022. If we compare mean NDVI 

value within particularly 2018 and 2022 year, then the mean NDVI is showing a decreasing 

trend from 0.649 to 0.528. Thus, a downfall in vegetation can be seen within the five-year 

span of time in KMA but remarkably within 2020 to 2022. The map (Figure 3) showing a 

remarkable change from 2018 to 2022 in central part of KMA towards low NDVI. 
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Fig. 11. NDVI (2018-2022) of KMA. 

Table 1 Year wise (2018-2022) change in NDVI, MNDWI, NDBSI, LST, API, RSEI and AQRSEI of KMA. 

YEAR NDVI MNDWI NDBSI LST API RSEI AQRSEI 

2018 0.3252 0.1347 0.2132 20.7995 0.4303 0.5420 0.5472 

2019 0.3401 0.2017 0.1834 29.1933 0.2172 0.4773 0.5304 

2020 0.3344 0.1870 0.1805 21.5200 0.2293 0.4336 0.4922 

2021 0.2845 0.1630 0.1869 23.7341 0.3950 0.4229 0.4567 

2022 0.2725 0.2080 0.0618 20.5067 0.3970 0.5341 0.5463 

 

Wetness: In case of good ecological measurement wetness is an important element. To 

detect and measure wetness of KMA, MNDWI is calculated. The MNDWI is useful in 

applications involving flood mapping, resource management and environmental monitoring. 

The value of MNDWI of KMA is ranges in between 0 to 1 because it is shown here after 

normalization. MNDWI is a positive indicator of RSEI and AQRSEI. 

The average MNDWI of KMA (Table 1) is decreased from 0.363 of 2018 to 0.262 of 

2019 and further, increased from 0.262 of 2019 to 0.391 of 2022. In case whole five years 

the mean MNDWI got increased from 0.363 of 2018 to 0.391 of 2022. The overall MNDWI 

map (Figure 4) showing more waterbody concentration toward south east KMA and some 

patches toward northern portion. The presence of high MNDWI value is highly suitable for 

high RSEI and AQRSEI. 
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Fig. 12 MNDWI (2018-2022) of KMA. 

Dryness: The soil and built-up area are an important factor of ecology. By putting soil and 

built-up together NDBSI is calculated to determine dryness of KMA. The NDBSI represent 

dryness of an area which is highly useful in several studies which involves soil classification, 

urban planning, agriculture, eco-environment monitoring etc. The value of NDBSI of KMA is 

ranges in between 0 to 1 because it is shown here after normalization. The NDBSI is negative 

indicators of RSEI and AQRSEI. 

 

Fig. 13 NDBSI (2018-2022) of KMA. 

The mean NDBSI value of KMA (Table 1) is decreased from 0.458 of 2018 to 0.309 of 

2020 but increased from 0.309 of 2020 to 0.615 of 2022. The overall NDBSI map (Figure 5) of 

all year are showing low dryness toward south east Kolkata and throughout the waterbody 

portions where high dryness toward central KMA or built-up region. Particularly within five 

years span mean NDBSI or dryness increases from 0.458 of 2018 to 0.615 of 2022.  
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Heat: The ecological condition of an area is highly affected by surface temperature. The LST 

is an important indicator of RSEI and AQRSEI, which represents heat of an area. The value of 

LST of KMA is ranges in between 0 to 1 because it is shown here after normalization. The LST 

is mainly influenced by surface properties, atmospheric conditions, thermal properties of an 

area and affect negatively to RSEI and AQRSEI.  

 

Fig. 14 LST (2018-2022) of KMA. 

The average LST value of KMA (Table 6) is decreased from 0.696 of 2018 to 0.426 of 2021 

and further increased from 0.426 of 2021 to 0.603 of 2022. If we compare mean LST value 

within particularly 2018 and 2022 year, then the mean LST is showing a decreasing trend 

from 0.696to 0.603. The LST of all map (Figure 6) showing higher value and increasing trend 

in central part compared to other of KMA. 

Air Quality: The air quality of KMA is measured by means of API which is negative indicator of 

RSEI and AQRSEI. The concentration of CO, NO2, O3 and SO2 gas are taken into 

consideration to calculate API of KMA. The API of KMA is ranges in between 0 to 1 because it 

is shown here after normalization. The API is highly useful in the study of climate change, 

environmental protection and urban planning etc. 

 

The API mean value of KMA (Table 1) is increased from 0.568 of 2018 to 0.726 of 

2020 but decreased from 0.726 of 2020 to 0.594 of 2021 and further increased a little bit 

from 0.594 of 2021 to 0.595 of 2023. Overall, the API of KMA (Figure 7) is highly 

concentrated in the southern KMA but moves toward western KMA in 2022. 
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Fig. 7 API (2018-2022) of KMA. 

Ecological crisis of KMA: The ecological crisis of an area can be well understood by the help 

of RSEI and AQRSEI. If there is higher RSEI and AQRSEI value then it represents a low crisis in 

ecological health and vice-versa.   

 

Remote sensing ecological index (RSEI): The RSEI is a satellite image-based tool and metrics 

used to measure various ecological parameter of zone of interest and mainly detect 

ecological status of an area. The RSEI of KMA is calculated based on four important 

indicators namely NDVI, MNDWI, NDBSI and LST from 2018 to 2022. The RSEI value of KMA 

is ranges in between 0 to 1 as it is shown here after normalization.  

Fig. 8 RSEI (2018-2022) of KMA. 

The RSEI value of KMA (Table 1) is decreased from 0.541 of 2018 to 0.422 of 2021 
and further increased from 0.422 of 2021 to 0.534 of 2022. In case of all the map (Figure 8) a 
high RSEI can be observed in case of south east and western KMA whereas a low RSEI in case 
of central part of KMA. If we compare RSEI of particularly 2018 and 2022 then we can 
observe a declining from 0.541 of 2018 to 0.534 of 2022. 
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Air quality based remote sensing ecological index (AQRSEI): The AQRSEI is mainly used to see 

the impact ecological impact of air pollution over the study area. Based on five important 

indicators such as NDVI, MNDWI, NDBSI, LST and API, the AQRSEI is calculated for KMA. The 

AQRSEI value of KMA is ranges in between 0 to 1 as it is shown here after normalization. The 

AQRSEI play vital role in monitoring and assessing the effects of air pollution on ecosystem. 

 

Fig. 15 AQRSEI (2018-2022) of KMA. 

The AQRSEI value of KMA (Table 1) is decreased from 0.547 of 2018 to 0.456 of 2021 and 
further increased from 0.456 of 2021 to 0.546 of 2022. If we compare RSEI of particularly 
2018 and 2022 then we can observe a declining from 0.547 of 2018 to 0.546 of 2022. In case 
of all the map (Figure 9) a high AQRSEI can be observed in case of south east and western 
KMA whereas a low RSEI in case of central part of KMA. 

Comparison between RSEI and AQRSEI: The comparison between RSEI and AQRSEI of KMA 

(Figure 10) is showing a change in year wise index value. In case of each year from 2018 to 

2022 the AQRSEI value is comparatively higher then RSEI value of KMA. It means the AQRSEI 

is representing low ecological crisis compared to RSEI.  

 

The RSEI and AQRSEI value of KMA (Table 1), both are decreased from 2018 to 2021 which 
indicates high ecological crisis within this year but further the value is increased in 2022 
which represent a recovery in crisis. If we compare RSEI and AQRSEI of particularly 2018 and 
2022 then we can observe a declining from 2018 to 2022.  The trend line (Figure 10) in case 
of RSEI and AQRSEI are showing negative trend which expect an increase in ecological crisis 
in near future. Both the RSEI and AQRSEI showing low value, where there is built-up zone in 
KMA whereas they showing higher value where there is vegetation, wetlands, agricultural 
land etc.  
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Fig. 16 Year wise (2018-2022) change in RSEI and AQRSEI of KMA. 

Conclusions 
The KMA which is an important city whose ecological crisis assessment is very much crucial 

as it is in thereat of rapid population growth, unplanned urbanization and air pollution. The 

ecological crisis of KMA within a time span of five years from 2018 to 2022 are being done by 

means of RSEI and AQRSEI. The RSEI and AQRSEI shows a decrease in value particularly 

within 2018 and 2022 year. The downfall in RSEI and AQRSEI value creates a form of 

ecological crisis which is increasing. Further, trend line of both RSEI and AQRSEI is negative 

which represent a high ecological crisis in near future. The AQRSEI is better as it is taking 

more indicators in consideration in comparison to RSEI. It is to be mentioned that both RSEI 

and AQRSEI have indirect relationship with ecological crisis. In order to deal with the 

ecological crisis several strategies have to be adopted in case of KMA such as afforestation, 

water conservation, reduction, recycling and pollution control, support sustainable 

agriculture, environmental legislation and regulation, transit to clean energy etc. 
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